Paul, D.

Dr. Debjani Paul

Phone: +(91-22) 2576 7798
E-mail: debjani.paul [at]
Location: Room No. 604, BSBE Building
Lab web page

Research Interest

  • Microfluidic devices for healthcare applications
  • Biological physics


  • Grand Challenges Explorations (Round 14- June 2014) Phase 1 grant from the Bill and Melinda Gates Foundation (through IKP-GCE).
  • Innovative Young Biotechnologist Award (2012) from Department of Biotechnology, Govt. of India.

Teaching (current)

  • Medical imaging physics (BB 663)
  • Microfluidics: Physics and Applications (BB 624)
  • Experimental Techniques in Biomedical Engineering (BB 653); course co-ordinator
  • Biosensors and BioMEMS (EE 625); co-instructor with Prof. Ramgopal Rao

Academic Background

  • Integrated PhD (Physics), 2005: Indian Institute of Science, Bangalore, India

Professional Experience

  • Associate Professor (May 2017 – present)
  • Assistant Professor (May 2012 – May 2017): Department of Biosciences and Bioengineering, IIT Bombay, India.
  • Research Fellow (June 2011 – May 2012): Piramal Healthcare Ltd., Mumbai, India.
  • Research Associate (November 2009 – January 2011): Cavendish Laboratory (Department of Physics), University of Cambridge, Cambridge, United Kingdom.
  • Research Associate (January 2007 – October 2009): Department of Engineering (Electrical Engineering Division), University of Cambridge, Cambridge, United Kingdom.
  • Visiting Researcher (January 2007 – June 2007): MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, United Kingdom.
  • Postdoctoral Fellow (March 2005 – December 2006): UMR 168, Physical Chemistry Unit, Curie Institute, Paris, France.


1. Portable system and method for absorption-based detection of nucleic acid polymers, B. B. Lad, S. Roy, H. Chakraborti, B. C. Barik, A. Singh, J. E. George, K. Das Gupta, D. Paul and K. Kondabagil, Indian Patent application 202121048906 (filed on Oct 26, 2021).
2. Methods and systems for dynamic generation of non- linear gradient profiles in a microfluidic gradient generator, Paduthol, T. S. Korma, A. Agrawal and D. Paul. Indian patent application 202121054557 (filed on Nov, 25, 2021).

3. Method for amplifying nucleic acid from a target. Paul, D. Ghosh and P. J. Shetty. Indian patent application 201621026481 (filed on Aug 3, 2016). (Granted in principle, waiting for NBA approval)
4. Point of care sickle cell test. Paul, C. D’Costa, O. Sharma and M. Singh. Indian patent application 201621026630 (filed on Aug 4, 2016).
5. A portable microscope. Paul and Samrat. Indian patent application 4743/Mum/2015 (Dec 18, 2015).
6. Method for increasing the hydrophobicity of paper. Paul and A. Jagirdar. Indian patent application 1652/MUM/2014 (May 15, 2014).
7. Paperfluidic device for regular monitoring of oral health. Paul, A. Jagirdar, P. Shetty, S. Satti, S. Garg and A. Gupta. Indian patent application 1653/MUM/2014 (May 15, 2014).

8. A method for molding thermoplastics. S. Mukherji, Paul, Bhuvaneshwari K. and A. Jagirdar. Indian patent 343702 (filed on 22 May 2015; granted on 10 Aug 2020).
9. Systems and methods for point-of-care detection and amplification of nucleic acids. Paul, P. Shetty and A. Jagirdar. Indian patent 344836 (filed on 16 Jan 2015; granted on 6 Aug 2020)
10. Method for fabrication of microlens. Mukherji, D. Paul, Bhuvaneshwari K. and A. Jagirdar. Indian patent 326309 (filed on 4 Dec, 2014; granted on 3 Dec 2019)
11. Rapid detection of urea in adulterated milk using thread based microfluidic system. J. Khandare, Paul, S. Banerjee, N. Taneja and M. Shidore. (US20140065712 A1).
12. Method for improving the bonding properties of microstructured substrates and devices prepared with this method. J.-L. Viovy, J. Weber, Paul, L. Malaquin, S. Miserere. (US 2010/0104480 A1.

Selected Publications (2015 – present)

  1. Dynamic generation of power function gradient profiles in a universal microfluidic gradient generator by controlling the inlet flow rates, G. Paduthol, T. S. Korma, A. Agrawal and Paul. Lab on a Chip (2022). DOI: 10.1039/D1LC00938A.
  2. Exploring the concentration-dependent transport and the loss of rhodamine B, tartrazine, methylene blue, and amaranth dyes in common paperfluidic substrates, S. Jaitpal, P. Naik, S. Chakraborty, S. Banerjee, and Paul. Results in Surfaces and Interfaces (2022), Vol. 6, p. 100034.
  3. Developing a point‐of‐care molecular test to detect SARS‐CoV‐2, Paul, P. Naik and S. Roy. Transactions of the Indian National Academy of Engineering (2020), Vol. 5, p. 229.
  4. The resurgence of paperfluidics: a new technology for cell, DNA and blood analysis, P. Naik, S. Jaitpal and Paul. IEEE Nanotechnology Magazine (2020), Vol. 14, p. 35.
  5. Detection of total bacterial load in water samples using a disposable impedimetric sensor, D. Mondal, R. Binish, S. Samanta, Paul and S. Mukherji, IEEE Sensors Journal (2020), Vol. 20, p. 1712.
  6. An integrated one-step assay combining thermal lysis and loop-mediated isothermal DNA amplification (LAMP) in 30 min from  coliand M. smegmatis cells on a paper substrate, P. Naik, S. Jaitpal, P. Shetty and D. Paul, Sensors and Actuators B (2019), Vol. 291, p. 74.
  7. Label-free electrochemical detection of mutans exploiting commercially fabricated printed circuit board sensing electrodes, G. Dutta, A. A. Jallow, D. Paul and D. Moschou, Micromachines (2019), Vol 10, p. 575.
  8. Clogging-free continuous operation with whole blood in a radial pillar device (RAPID), N. Mehendale, O. Sharma, S. Pandey and Paul, Biomedical Microdevices (2018), Vol. 20, p. 75.
  9. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control, B. Karunakaran, J. Tharion, A. Dhawangale, Paul and S. Mukherji, Journal of Biomedical Optics (2018), Vol. 23, p. 025002.
  10. A RAdial PIllar Device (RAPID) for continuous and high-throughput separation of multi-sized particles, N. Mehendale, O. Sharma, C. D’Costa and Paul, Biomedical Microdevices (2018), Vol. 20, p. 6.
  11. Thermal lysis and isothermal amplification of Mycobacterium tuberculosis H37Rv in one tube, P. Shetty, D. Ghosh and Paul, Journal of Microbiological Methods (2017), Vol.143, p. 1.
  12. Impedance spectroscopy-based detection of cardiac biomarkers on polyaniline coated filter paper, D. Mondal, Paul and S. Mukherji, IEEE Sensors (2017), Vol. 17, p. 5021.
  13. Rapid amplification of Mycobacterium tuberculosis DNA on a paper substrate, P. Shetty, D. Ghosh, M. Singh, A. Tripathi and Paul, RSC Advances (2016), Vol 6, p. 56205.
  14. Fabrication of nearly hemispherical polymer lenses using water droplets as moulds, B. Karunakaran, A. Jagirdar, Paul and S. Mukherji, IETE Technical Review, (2016), Vol. 33, No. 1, p. 5459.
  15. A paperfluidic device for dental applications using a novel patterning technique, A. Jagirdar, P. Shetty, S. Satti, S. Garg and Paul, Analytical Methods, (2015), vol. 7, p. 1293.