Paul, D.

Dr. Debjani Paul
Professor

Phone: +(91-22) 2576 7798
Fax: +(91-22) 2572 7760
E-mail: debjani.paul [at] iitb.ac.in
Location: Room No. 604, BSBE Building
Lab web page

Research Interest

  • Microfluidic devices for bioengineering and healthcare applications (diagnostics, therapeutics, synthetic biology)
  • Biological physics

Awards

  • Dr. P. K. Patwardhan Technology Development Award from Indian Institute of Technology Bombay (2021)
  • Grand Challenges Explorations (Round 14- June 2014) Phase 1 grant from the Bill and Melinda Gates Foundation (through IKP-GCE).
  • Innovative Young Biotechnologist Award (2012) from Department of Biotechnology, Govt. of India.

Teaching (current)

  • Medical imaging physics (BB 663)
  • Microfluidics: Physics and Applications (BB 624)
  • Experimental Techniques in Biomedical Engineering (BB 653); course coordinator
  • Courses taught in the past: Biosensors and BioMEMS (EE 625); co-instructor with Prof. Ramgopal Rao

Academic Background

  • Integrated PhD (Physics), 2005: Indian Institute of Science, Bangalore, India

Professional Experience

  • Professor in-charge, Wadhwani Research Centre for Bioengineering, IIT Bombay (Nov 2021 – Present)
  • Professor (April 2022 – Present)
  • Associate Professor (May 2017 – April 2022)
  • Assistant Professor (May 2012 – May 2017): Department of Biosciences and Bioengineering, IIT Bombay, India.
  • Research Fellow (June 2011 – May 2012): Piramal Healthcare Ltd., Mumbai, India.
  • Research Associate (November 2009 – January 2011): Cavendish Laboratory (Department of Physics), University of Cambridge, Cambridge, United Kingdom.
  • Research Associate (January 2007 – October 2009): Department of Engineering (Electrical Engineering Division), University of Cambridge, Cambridge, United Kingdom.
  • Visiting Researcher (January 2007 – June 2007): MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, United Kingdom.
  • Postdoctoral Fellow (March 2005 – December 2006): UMR 168, Physical Chemistry Unit, Curie Institute, Paris, France.

Patents


Granted:

  1. Paperfluidic device for regular monitoring of oral health. D. Paul, A. Jagirdar, P. Shetty, S. Satti, S. Garg and A. Gupta. Indian patent application 1653/MUM/2014 (filed on 15/05/2014;granted on 30 Aug 2022).
  2. Method for increasing the hydrophobicity of paper. D. Paul and A. Jagirdar. Indian patent application 1652/MUM/2014 (filed on May 15, 2014; granted on 25 Feb 2022).
  3. A method for molding thermoplastics. S. Mukherji, D. Paul, Bhuvaneshwari K. and A. Jagirdar. Indian patent 343702 (filed on 22 May 2015; granted on 10 Aug 2020).
  4. Systems and methods for point-of-care detection and amplification of nucleic acids. D. Paul, P. Shetty and A. Jagirdar. Indian patent 344836 (filed on 16 Jan 2015; granted on 6 Aug 2020)
  5. Method for fabrication of microlens. Mukherji, D. Paul, Bhuvaneshwari K. and A. Jagirdar. Indian patent 326309 (filed on 4 Dec, 2014; granted on 3 Dec 2019)
  6. Method for amplifying nucleic acid from a target. D. Paul, D. Ghosh and P. J. Shetty. Indian patent application 201621026481 (filed on Aug 3, 2016). (Granted on 4 Jul, 2022)
  7. Rapid detection of urea in adulterated milk using thread based microfluidic system. J. Khandare, D. Paul, S. Banerjee, N. Taneja and M. Shidore. (US20140065712 A1).
  8. Method for improving the bonding properties of microstructured substrates and devices prepared with this method. J.-L. Viovy, J. Weber, D. Paul, L. Malaquin, S. Miserere. (US 2010/0104480 A1

Filed:                                                                                                                                      

  1. Digital inverted bright field microscopes with single and variable magnifications, Debjani Paul, Samrat, Dipendra Bhadauriya, Sathya Murthy, Indian patent application 202221003972 (filed on Jan 24, 2022).
  2. Portable system and method for absorption-based detection of nucleic acid polymers, B. B. Lad, S. Roy, H. Chakraborti, B. C. Barik, A. Singh, J. E. George, K. Das Gupta, D. Paul and K. Kondabagil, Indian patent application 202121048906 (filed on Oct 26, 2021).
  3. Methods and systems for dynamic generation of non- linear gradient profiles in a microfluidic gradient generator, Paduthol, T. S. Korma, A. Agrawal and D. Paul. Indian patent application 202121054557 (filed on Nov, 25, 2021).

Examined:

  1. Point of care sickle cell test. D. Paul, C. D’Costa, O. Sharma and M. Singh. Indian patent application 201621026630 (filed on Aug 4, 2016).
  2. A portable microscope. D. Paul and Samrat. Indian patent application 4743/Mum/2015 (Dec 18, 2015).

Publications from IIT Bombay

Preprints:

  1. Anomalous diffusion of E. coli under microfluidic confinement and chemical gradient. R. Raza, J. E. George, S. Kumari, M. K. Mitra, and D. Paul. BioRxiv (https://doi.org/10.1101/2022.12.12.520016).
  2. Differential sensitivity to hypoxia enables shape-based classification of sickle cell disease and trait blood. C. D’Costa, O. Sharma, R. Manna, M. Singh, Samrat, S. Singh, A. Mahto, P. Govil, S. Satti, N. Mehendale and D. Paul. MedRxiv (https://doi.org/10.1101/2020.10.28.20221358)
  3. A fast microfluidic device to measure the deformability of red blood cells. N. Mehendale, D. Mitra and D. Paul, BioRxiv (https://doi.org/10.1101/644161)
  4. Single-test image-based automated machine learning system for distinguishing between trait and diseased blood samples. S. A. Nasser, D. Paul, S.P. Awate. arXiv: 2103.16285v1. (https://arxiv.org/abs/2103.16285)

Selected Publications (2015 – present)

  1. A low-cost and portable centrifugal microfluidic platform for continuous processing of large sample volumes. S. Acharya, J. Chhabra, S. Mukherji and D. Paul. AIP Advances (2023) (Accepted manuscript)
  2. Development of an in silico model of eccrine sweat using molecular modelling techniques, P. Deshpande, B. Ravikumar, S. Tallur, D. Paul and B. Rai. Scientific Reports (2022), Vol. 12, Article number: 20263.
  3. Development of a PNA-DiSc2 based portable absorbance platform for the detection of pathogen nucleic acids. S. B. Lad, S. Roy, J. E. George, H. Chakraborti, S. Lalsare, B. Barik, A. Singh, A. Zade, S. Agrawal, J. Shastri, A. Chatterjee, K. Das Gupta, D. Paul and K. Kondabagil. Analyst (2022), Vol. 147, p. 5306.
  4. Temperature-dependent self-assembly of biofilaments during red blood cell sickling, A. Behera, O. Sharma, D. Paul and A. Sain. Journal of Chemical Physics, (2022), Vol. 157, p. 014105.
  5. Effect of temperature on the growth characteristics of motile and non-motile Escherichia coli MG1655 colonies on hard agar. A. Gupta, N. Rana, B. Jacob, Samrat, N. Mehendale, D. Paul and P. Perlekar. Indian Journal of Physics (2022), Vol. 96, p. 2613.
  6. Dynamic generation of power function gradient profiles in a universal microfluidic gradient generator by controlling the inlet flow rates, G. Paduthol, T. S. Korma, A. Agrawal and D. Paul. Lab on a Chip (2022), Vol. 22, p. 592.
  7. Exploring the concentration-dependent transport and the loss of rhodamine B, tartrazine, methylene blue, and amaranth dyes in common paperfluidic substrates, S. Jaitpal, P. Naik, S. Chakraborty, S. Banerjee, and D. Paul. Results in Surfaces and Interfaces (2022), Vol. 6, p. 100034.
  8. Hemoprocessor: A portable platform using rapid acoustically driven plasma separation to enable point-of-care diagnostics by infrared spectroscopy, K. P. R. Nair, T. C. P. Veettil, B. R. Wood, D. Paul, and T. Alan. Biosensors (2022), Vol. 12, p.119.
  9. Developing a point‐of‐care molecular test to detect SARS‐CoV‐2, D. Paul, P. Naik and S. Roy. Transactions of the Indian National Academy of Engineering (2020), Vol. 5, p. 229.
  10. The resurgence of paperfluidics: a new technology for cell, DNA and blood analysis, P. Naik, S. Jaitpal and D. Paul. IEEE Nanotechnology Magazine (2020), Vol. 14, p. 35.
  11. Detection of total bacterial load in water samples using a disposable impedimetric sensor, D. Mondal, R. Binish, S. Samanta, D. Paul and S. Mukherji, IEEE Sensors Journal (2020), Vol. 20, p. 1712.
  12. An integrated one-step assay combining thermal lysis and loop-mediated isothermal DNA amplification (LAMP) in 30 min from  coliand M. smegmatis cells on a paper substrate, P. Naik, S. Jaitpal, P. Shetty and D. Paul, Sensors and Actuators B (2019), Vol. 291, p. 74.
  13. Label-free electrochemical detection of mutans exploiting commercially fabricated printed circuit board sensing electrodes, G. Dutta, A. A. Jallow, D. Paul and D. Moschou, Micromachines (2019), Vol 10, p. 575.
  14. Clogging-free continuous operation with whole blood in a radial pillar device (RAPID), N. Mehendale, O. Sharma, S. Pandey and D. Paul, Biomedical Microdevices (2018), Vol. 20, p. 75.
  15. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control, B. Karunakaran, J. Tharion, A. Dhawangale, D. Paul and S. Mukherji, Journal of Biomedical Optics (2018), Vol. 23, p. 025002.
  16. A RAdial PIllar Device (RAPID) for continuous and high-throughput separation of multi-sized particles, N. Mehendale, O. Sharma, C. D’Costa and D. Paul, Biomedical Microdevices (2018), Vol. 20, p. 6.
  17. Thermal lysis and isothermal amplification of Mycobacterium tuberculosis H37Rv in one tube, P. Shetty, D. Ghosh and D. Paul, Journal of Microbiological Methods (2017), Vol.143, p. 1.
  18. Impedance spectroscopy-based detection of cardiac biomarkers on polyaniline coated filter paper, D. Mondal, D. Paul and S. Mukherji, IEEE Sensors (2017), Vol. 17, p. 5021.
  19. Rapid amplification of Mycobacterium tuberculosis DNA on a paper substrate, P. Shetty, D. Ghosh, M. Singh, A. Tripathi and D. Paul, RSC Advances (2016), Vol 6, p. 56205.
  20. Fabrication of nearly hemispherical polymer lenses using water droplets as moulds, B. Karunakaran, A. Jagirdar, D. Paul and S. Mukherji, IETE Technical Review, (2016), Vol. 33, No. 1, p. 5459.
  21. A paperfluidic device for dental applications using a novel patterning technique, A. Jagirdar, P. Shetty, S. Satti, S. Garg and D. Paul, Analytical Methods, (2015), vol. 7, p. 1293.