IIT Bombay logo

Publications and patents

Book chapters

  1. Dried blood patterns for diagnosis of non-communicable and infectious diseases, J. E. George and D. Paul, in BioSensing, Theranostics, and Medical Devices: From Laboratory to Point-of-Care Testing, edited by R. Srivastava, V. Borse and P. Chandra, Springer Nature (2021)
  2. Flow control in paper-based microfluidic devices, S. Jaitpal and D. Paul, in Paper Microfluidics: Theory and Applications, edited by S. Bhattacharya, S. Kumar and A. Agarwal, pp. 47 -66, Springer Nature (2019)
  3. Nucleic acid amplification on paper substrates, P. Naik, R. Manna and D. Paul, in Paper Microfluidics: Theory and Applications, edited by S. Bhattacharya, S. Kumar and A. Agarwal, pp. 115 -146, Springer Nature (2019)
  4. Single-cell separation, S. Pandey, N. Mehendale and D. Paul, in Handbook of Single Cell Technologies, edited by T. S. Santra and F.-G. Tseng, Springer Nature (2018)

 

Preprints (yet to be peer-reviewed) 

  1. Single-test image-based automated machine learning system for distinguishing between trait and diseased blood samples, S. A. Nasser, D. Paul, S.P. Awate. arXiv: 2103.16285v1.
  2. Temperature-dependent self-assembly of biofilaments during red blood cell sickling, A. Behera, O. Sharma, D. Paul, and A. Sain. BioRxiv, (https://doi.org/10.1101/2021.03.07.433773)
  3. Differential sensitivity to hypoxia enables shape-based classification of sickle cell disease and trait blood, C. D’Costa, O. Sharma, R. Manna, M. Singh, Samrat, S. Singh, A. Mahto, P. Govil, S. Satti, N. Mehendale and D. Paul. MedRxiv (https://doi.org/10.1101/2020.10.28.20221358)
  4. A fast microfluidic device to measure the deformability of red blood cells, N. Mehendale, D. Mitra and D. Paul, BioRxiv (https://doi.org/10.1101/644161)

 

Journal Publications

    Work done at IIT Bombay:
  1. Dynamic generation of power function gradient profiles in a universal microfluidic gradient generator by controlling the inlet flow rates, G. Paduthol, T. S. Korma, A. Agrawal and D. Paul. Lab on a Chip (2022). DOI: 10.1039/D1LC00938A.
  2. Exploring the concentration-dependent transport and the loss of rhodamine B, tartrazine, methylene blue, and amaranth dyes in common paperfluidic substrates, S. Jaitpal, P. Naik, S. Chakraborty, S. Banerjee, and D. Paul. Results in Surfaces and Interfaces (2022), Vol. 6, p. 100034.
  3. Developing a point‐of‐care molecular test to detect SARS‐CoV‐2, D. Paul, P. Naik and S. Roy. Transactions of the Indian National Academy of Engineering (2020), Vol. 5, p. 229.
  4. The resurgence of paperfluidics: a new technology for cell, DNA and blood analysis, P. Naik, S. Jaitpal and D. Paul. IEEE Nanotechnology Magazine (2020), Vol. 14, p. 35.
  5. Detection of total bacterial load in water samples using a disposable impedimetric sensor, D. Mondal, R. Binish, S. Samanta, D. Paul and S. Mukherji, IEEE Sensors Journal (2020), Vol. 20, p. 1712.
  6. An integrated one-step assay combining thermal lysis and loop-mediated isothermal DNA amplification (LAMP) in 30 min from E. coli and M. smegmatis cells on a paper substrate, P. Naik, S. Jaitpal, P. Shetty and D. Paul, Sensors and Actuators B (2019), Vol. 291, p. 74. (PDF) Click here for the BioRxiv preprint.
  7. Label-free electrochemical detection of S. mutans exploiting commercially fabricated printed circuit board sensing electrodes, G. Dutta, A. A. Jallow, D. Paul and D. Moschou, Micromachines (2019), Vol 10, p. 575. (Link to download)
  8. Clogging-free continuous operation with whole blood in a radial pillar device (RAPID), N. Mehendale, O. Sharma, S. Pandey and D. Paul, Biomedical Microdevices (2018), Vol. 20, p. 75. (PDF) Click here for the BioRxiv preprint of a slightly older draft.
  9. A radial pillar device (RAPID) for continuous and high-throughput separation of multi-sized particles. N. Mehendale, O. Sharma, C. D'Costa and D. Paul, Biomedical Microdevices (2017), Vol. 20, article 6. (PDF) and the BioRxiv preprint.
  10. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control, B. Karunakaran, J. Tharion, A. Dhawangale, D. Paul and S. Mukherji, Journal of Biomedical Optics (2018) Vol. 23, p. 025002. (Link to download)
  11. Thermal lysis and isothermal amplification of Mycobacterium tuberculosis H37Rv in one tube, P. Shetty, D. Ghosh and D. Paul, Journal of Microbiological Methods (2017), Vol. 143, p. 1. (PDF)
  12. Impedance spectroscopy based detection of cardiac biomarkers on polyaniline coated filter paper, D. Mondal, D. Paul and S. Mukherji, IEEE Sensors (2017), Vol. 17, p. 5021.(PDF)
  13. Fabrication of nearly hemispherical polymer lenses using water droplets as moulds, B. Karunakaran, A. Jagirdar, D. Paul and S. Mukherji, IETE Technical Review (2016) Vol. 33, No. 1, p. 5459 (PDF)
  14. Rapid amplification of Mycobacterium tuberculosis DNA on a paper substrate, P. Shetty, D. Ghosh, M. Singh, A. Tripathi and D. Paul, RSC Advances (2016), Vol. 6, p. 56205. (PDF)
  15. A paperfuildic device for dental applications using a novel patterning technique. A. Jagirdar, P. Shetty, S. Satti, S. Garg and D. Paul, Analytical Methods (2015), Vol. 7, p. 1293. (PDF)

  16. Work done by Debjani prior to joining IIT Bombay:
  17. Phagocytosis dynamics depends on target shape, D. Paul, S. Achouri, Y. Z. Yoon, J. Herre, C. E. Bryant and P. Cicuta, Biophysical Journal (2013), Vol. 105, p. 1143. (PDF)
  18. Chemical synthesis and sensing in inexpensive thread-based microdevices, S.S. Banerjee, J. Khandare, A. Roychowdhury, N. taneja, R. Janrao and D.Paul, Sensors and Actuators B: Chemical (2013), Vol. 186, p. 429. (PDF)
  19. Transferrin mediated rapid targeting, isolation and detection of circulating tumor cells by multifunctional magneto-dendritic nanosystem, S. S. Banerjee, A. Jalota-Badhwar, S. D. Satavalekar, S. G. Bhansali, N. D. Aher, R. Mascarenhas, D. Paul, S. Sharma and J. J. Khandare, Advanced Healthcare Materials (2012), Vol. 2, p. 800. (selected as inside cover). (PDF)
  20. Enhancing interactions with colon cancer cells on transferrin-conjugated 3D nanostructured substrate, S. Banerjee *, D. Paul *, A. Jalota-Badhwar, N. Aher, S. Bhansali and J. Khandare, Small (2012), Vol. 8, p. 1657. (* equal contributions). (PDF)
  21. A “dry and wet hybrid” lithography technique for multilevel replication templates: Applications to microfluidic neuron culture and two-phase global mixing, D. Paul, L. Saias , J.-C. Pedinotti , M. Chabert , S. Magnifico , A. Pallandre , B. de Lambert , C. Houdayer , B. Brugg , J.-M. Peyrin, J.-L. Viovy, Biomicrofluidics (2011), Vol. 5, p. 024102. (PDF)
  22. Label-free sub-picomolar protein detection with field-effect transistors, P. Estrela, D. Paul, Q. Song, L. K. J. Stadler, L. Wang, E. Huq, J. J. Davis, P. Ko Ferrigno, and P. Migliorato, Analytical Chemistry (2010), Vol. 82, p. 3531. (PDF)
  23. Fabrication of BioFET linear array for detection of protein interactions, L. Wang, P. Estrela, E. Huq, P. Li, S. Thomas, P. Ko Ferrigno, D. Paul, P. Adkin, and P. Migliorato, Microelectronic Engineering (2010), Vol. 87, p. 753 (PDF)
  24. Stability of thin film transistors incorporating a zinc oxide or indium zinc oxide channel deposited by a high rate sputtering process, A. J. Flewitt, J.D. Dutson, P. Beecher, D. Paul, S.J. Wakeham, M. E. Vickers, C. Ducati, S. P. Speakman, W. I. Milne and M.J. Thwaites, Semiconductor Science and Technology (2009), Vol. 24, p. 085002. (PDF)
  25. Label-free detection of protein interactions with peptide aptamers by open circuit potential measurement, P. Estrela, D. Paul, P. Li, S. D. Keighley, P. Migliorato, S. Laurenson, P. Ko Ferrigno, Electrochimica Acta (2008), Vol. 53, p. 6489. (PDF)
  26. Surface immobilised peptide aptamers as probe molecules for protein detection, S. Johnson, D. Evans, S. Laurenson, D. Paul, A.G. Davies, P. Ko Ferrigno and C.Wälti, Analytical Chemistry (2008), Vol. 80, p. 978. (PDF)
  27. Lamination-based rapid prototyping of microfluidic devices using flexible thermo plastic substrates, D. Paul, A. Pallandre, S. Miserere, J. Weber, J.-L. Viovy, Electrophoresis (2007), Vol. 28, p. 1115. (PDF)
  28. Towards DNA high-resolution separation in COC chips, S. Miserere, D. Paul, B. de Lambert, J.-L. Viovy and J.Weber, La Houille Blanche– Revue Internationale de L’eau (2007), Vol. 6, p. 58.
  29. Dynamic optimization of on-chip polymerase chain reaction by monitoring intracycle fluorescence using fast synchronous detection, S. Mondal, D. Paul, V. Venkataraman, Applied Physics Letters (2007), Vol. 90, p. 013902. (PDF)
  30. New monolithic templates and improved protocols for soft lithography and microchip fabrication, A. Pallandre, D. Paul, B. de Lambert, J.-L. Viovy and C. Fütterer, Journal of Physics: Condensed Matter (2006), Vol. 75, p. S665 (PDF)
  31. A power-efficient thermocycler for DNA amplification based on induction heating, D. Paul, V. Venkataraman, K. Naga Mohan, H. Sharat Chandra and V. Natarajan, Review of Scientific Instruments (2004), Vol. 75, p. 2880 (PDF)
  32. A portable battery-operated chip thermocycler based on induction heating, D. Paul, V. Venkataraman, Sensors and Actuators A (2002), Vol. 102, p. 151 (PDF)

Patents

    Filed:            

  1. Portable system and method for absorption-based detection of nucleic acid polymers, S. B. B. Lad, S. Roy, H. Chakraborti, B. C. Barik, A. Singh, J. E. George, K. Das Gupta, D. Paul and K. Kondabagil, Indian Patent application 202121048906 (filed on Oct 26, 2021).
  2. Methods and systems for dynamic generation of non- linear gradient profiles in a microfluidic gradient generator,  G. Paduthol, T. S. Korma, A. Agrawal and D. Paul. Indian patent application 202121054557 (filed on Nov, 25, 2021).
  3.  

    Examined:
  4. Method for amplifying nucleic acid from a target. D. Paul, D. Ghosh and P. J. Shetty. Indian patent application 201621026481 (filed on Aug 3, 2016). (Granted in principle, waiting for NBA approval)
  5. Point of care sickle cell test. D. Paul, C. D'Costa, O. Sharma and M. Singh. Indian patent application 201621026630 (filed on Aug 4, 2016).
  6. A portable microscope. D. Paul and Samrat. Indian patent application 4743/Mum/2015 (Dec 18, 2015).
  7. Method for increasing the hydrophobicity of paper. D. Paul and A. Jagirdar. Indian patent application 1652/MUM/2014 (May 15, 2014).
  8. Paperfluidic device for regular monitoring of oral health. D. Paul, A. Jagirdar, P. Shetty, S. Satti, S. Garg and A. Gupta. Indian patent application 1653/MUM/2014 (May 15, 2014).
  9.  

    Granted:

  10. A method for molding thermoplastics. S. Mukherji, D. Paul, Bhuvaneshwari K. and A. Jagirdar. Indian patent 343702 (filed on 22 May 2015; granted on 10 Aug 2020).
  11. Systems and methods for point-of-care detection and amplification of nucleic acids. D. Paul, P. Shetty and A. Jagirdar. Indian patent 344836 (filed on 16 Jan 2015; granted on 6 Aug 2020)
  12. Method for fabrication of microlens. S. Mukherji, D. Paul, Bhuvaneshwari K. and A. Jagirdar. Indian patent 326309 (filed on 4 Dec, 2014; granted on 3 Dec 2019)
  13. Rapid detection of urea in adulterated milk using thread based microfluidic system. J. Khandare, D. Paul, S. Banerjee, N. Taneja and M. Shidore. (US20140065712 A1).
  14. Method for improving the bonding properties of microstructured substrates and devices prepared with this method. J.-L. Viovy, J. Weber, D. Paul, L. Malaquin, S. Miserere. (US 2010/0104480 A1